4
中心计算的无线传感器网络2-不相交路径路由算法.doc
中心计算的无线传感器网络2-不相交路径路由算法中心计算的无线传感器网络2-不相交路径路由算法中心计算的无线传感器网络2-不相交路径路由算法
4
一种基于AS环的域间不相交多路径生成方法.doc
一种基于AS环的域间不相交多路径生成方法一种基于AS环的域间不相交多路径生成方法一种基于AS环的域间不相交多路径生成方法
4
一种交通网络不相交路径搜寻方法.doc
一种交通网络不相交路径搜寻方法一种交通网络不相交路径搜寻方法一种交通网络不相交路径搜寻方法
40
关于含5--圈相邻6--圈或相交5--圈平面图的DP--4--着色问题.pdf
1IIIIII1111 11 IIII II IIIY3753464分类号——UDC一弹中唯jf鬣夫垮硕士学位论文密级——编号——学位申请人姓名:申请学位学生类别:申请学位学科专业:指导教师姓名:张茂
20
existence of two disjoint long cycles in graphs:图中不相交长循环的存在性.pdf
existence of two disjoint long cycles in graphs:图中不相交长循环的存在性
4
一种多约束电力通信业务最大不相交双路由配置方法.doc
一种多约束电力通信业务最大不相交双路由配置方法一种多约束电力通信业务最大不相交双路由配置方法一种多约束电力通信业务最大不相交双路由配置方法
65
关于两不相交路径问题的研究.pdf
关于两不相交路径问题的研究
(专业)计算机软件与理论。声明:知识水坝论文均为可编辑的文本格式PDF,请放心下载使用。需要DOC格式请发豆丁站内信。
78
SCHUR+Q函数和不相交行走的组合性质.pdf
SCHUR+Q函数和不相交行走的组合性质
应用数学(APPLIED MATHEMATICS)是应用目的明确的数学理论和方法的总称,研究如何应用数学知识到其它范畴(尤其是科学)的数学分枝,可以说是纯数学的相反。包括微分方程、向量分析、矩阵、傅里叶变换、复变分析、数值方法、概率论、数理统计、运筹学、控制理论、组合数学、信息论等许多数学分支,也包括从各种应用领域中提出的数学问题的研究。计算数学有时也可视为应用数学的一部分。 应用数学应用数学包含两个词:”应用”和”数学”。大体而言,应用数学就包括两个部分,一部分就是与应用有关的数学,这是传统数学的一支,我们可称之为”可应用的数学”。另外一部分是数学的应用,就是以数学为工具,探讨解决科学、工程学和社会学方面的问题,这是超越传统数学的范围。
  数学是人类活动中的一个项目,即使全是由人脑产生的最纯粹的数学,也与自然界的规律相关联,迟早会对自然规律的掌握或其他方面有用处的。我们将现在已可应用,或者即将就可应用的数学称之为可应用的数学。 以目前的发展而言,大概像微分方程、概率统计、计算数学、计算机数学,和运筹学等都算在可应用的数学范围内。另一类则”数学的应用”。物理学家、航空工程师、地质学家、生物学家、经济学家等,他们为了解决各学科及工程上的问题,需要用数学用为工具。因此,他们有时要把已经发展得很完善的数学搬过来用,有时候却不得不自己创造性地发展新的数学方法,来处理他们所遇到的独特问题。这就是数学的应用。他们往往要求不太高的严谨,常需要配合观察实验结果及经验所赋予的直觉来发展数学方法。所以除了相当水平的数学修养外,应用数学家们对应用主题的学科还必须有相当深度了解。
  传统的数学分为”纯数学”与”可应用的数学”,二者的差别只是程度上的不同,即使最纯粹的数学在将来也会有应用的可能。它们的共同点是都只关注问题的数学内容,也只用数学标准来衡量研究的成果。“数学的应用”则以科学或工程内容为主导,数学只是工具,所以研究成就的衡量标准也大大不同。
  20世纪以前没有”应用数学”这一名词。大数学家如高斯、欧拉、柯西等都是既搞纯数学,又搞应用数学。比如,函数的发展基本上是为了解决物理学所引发的拉普拉斯方程。纯粹的逻辑思维与自然现象的解释探讨是并行发展的。一直到二次大战前,高等数学的应用绝大部分与物理学有关。
  在二次大战前后,由于航空工业的发展以及飞机在战争..
66
访问平面内不相交线段esp问题求解算法研究.pdf
ESPproblem visitingdisjoint segments planeAthesis Submitted DalianMaritime University In partial ful
51
AD+HOC网络模型下的边不相交路径选择算法.pdf
AD+HOC网络模型下的边不相交路径选择算法
应用数学(APPLIED MATHEMATICS)是应用目的明确的数学理论和方法的总称,研究如何应用数学知识到其它范畴(尤其是科学)的数学分枝,可以说是纯数学的相反。包括微分方程、向量分析、矩阵、傅里叶变换、复变分析、数值方法、概率论、数理统计、运筹学、控制理论、组合数学、信息论等许多数学分支,也包括从各种应用领域中提出的数学问题的研究。计算数学有时也可视为应用数学的一部分。 应用数学应用数学包含两个词:”应用”和”数学”。大体而言,应用数学就包括两个部分,一部分就是与应用有关的数学,这是传统数学的一支,我们可称之为”可应用的数学”。另外一部分是数学的应用,就是以数学为工具,探讨解决科学、工程学和社会学方面的问题,这是超越传统数学的范围。
  数学是人类活动中的一个项目,即使全是由人脑产生的最纯粹的数学,也与自然界的规律相关联,迟早会对自然规律的掌握或其他方面有用处的。我们将现在已可应用,或者即将就可应用的数学称之为可应用的数学。 以目前的发展而言,大概像微分方程、概率统计、计算数学、计算机数学,和运筹学等都算在可应用的数学范围内。另一类则”数学的应用”。物理学家、航空工程师、地质学家、生物学家、经济学家等,他们为了解决各学科及工程上的问题,需要用数学用为工具。因此,他们有时要把已经发展得很完善的数学搬过来用,有时候却不得不自己创造性地发展新的数学方法,来处理他们所遇到的独特问题。这就是数学的应用。他们往往要求不太高的严谨,常需要配合观察实验结果及经验所赋予的直觉来发展数学方法。所以除了相当水平的数学修养外,应用数学家们对应用主题的学科还必须有相当深度了解。
  传统的数学分为”纯数学”与”可应用的数学”,二者的差别只是程度上的不同,即使最纯粹的数学在将来也会有应用的可能。它们的共同点是都只关注问题的数学内容,也只用数学标准来衡量研究的成果。“数学的应用”则以科学或工程内容为主导,数学只是工具,所以研究成就的衡量标准也大大不同。
  20世纪以前没有”应用数学”这一名词。大数学家如高斯、欧拉、柯西等都是既搞纯数学,又搞应用数学。比如,函数的发展基本上是为了解决物理学所引发的拉普拉斯方程。纯粹的逻辑思维与自然现象的解释探讨是并行发展的。一直到二次大战前,高等数学的应用绝大部分与物理学有关。
  在二次大战前后,由于航空工业的发展以及飞机在..
1篇相似文档

向豆丁求助:有没有不相交?